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Abstract
The classical solutions to higher dimensional Yang–Mills (YM) systems, which
form part of higher dimensional Einstein–YM (EYM) systems, are studied.
These are the gravity-decoupling limits of the fully gravitating EYM solutions.
In odd spacetime dimensions, depending on the choice of gauge group and its
representation, these are either topologically stable or are unstable. Both cases
are analysed, the latter numerically only. In even spacetime dimensions they are
always unstable, describing saddle points of the energy, and can be described
as sphalerons. This instability is analysed by constructing the non-contractible
loops and calculating the Chern–Simons (CS) charges, and also perturbatively
by numerically constructing the negative modes. This study is restricted to the
simplest YM system in spacetime dimensions d = 6, 7, 8, which captures the
qualitative features of the generic case.

PACS numbers: 12.10.−g, 12.15.−y

1. Introduction

Gravitational and non-Abelian gauge fields occur in low energy effective actions [1] of
superstring theory and supergravities. On the other hand classical solutions to the Einstein–
Yang–Mills (EYM) system, especially black holes, have an important role to play in quantum
gravity [2]. These effective actions consist, in addition to the usual Einstein–Hilbert and
Yang–Mills (YM) systems, of higher order terms in both the gravitational curvature, and the
YM curvature and its gauge covariant derivatives. Moreover some of the theories in which
such terms are present are defined in higher dimensional spacetimes, namely on D-branes [3].
Thus, the study of classical solutions to higher curvature EYM models in higher dimensions
is of physical interest.

It turns out that in higher (than 3 + 1) dimensions, the higher order YM curvature terms
play a much more important role than do the corresponding gravitational terms, e.g. the Gauss–
Bonnet terms. The inclusion of the latter does not seem to alter the qualitative properties of
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the classical solutions, while the absence of higher order YM terms prevents the existence
of such solutions due to the Derrick scaling requirements not being satisfied. It is for this
reason that we restrict our considerations in this paper to the inclusion of higher order YM4

only. Our aim being the study of the stability (and its absence) in these systems, we ignore the
gravitational terms entirely since the most important mechanism affecting stability/instability
is characterized by the YM sector alone.

Concerning the higher order YM curvature terms in the string theory effective action,
the situation is complex and as yet unresolved. While YM terms up to F 4 arise from (the
non-Abelian version of ) the Born–Infeld action [5], it appears that this approach does not
yield all the F 6 terms [6]. Terms of order F 6 and higher can also be obtained by employing
the constraints of (maximal) supersymmetry [7]. The results of the various approaches are not
identical.

Given the evolving stage which higher order curvature YM terms are in, and motivated
by the technical requirements for the construction of classical solutions, we have restricted
our considerations to one particular family of higher curvature YM systems. The criterion
is that only the second power (and no higher power) of the velocity field ∂0Ai occurs in the
Lagrangian. This constrains our choice to one where the coefficients of each F 2n term is fixed
by the requirement that only totally antisymmetrized curvature n-forms are employed. We
have no physical justification for this, but we hope that the ensuing qualitative results hold
also in the more general, and as yet not definitely fixed, cases. In this family of YM systems
the number of higher order terms that can arise in any given dimension is limited due to the
imposed antisymmetry.

The other constraint we apply is that in any given dimension, we truncate the series of F 2n

terms, to the minimum required to satisfy the Derrick scaling requirement. Our justification
here is that higher order terms become more important at high energies so in the low energy
effective action it is sufficient to keep the lowest order terms.

It is well known that there exist static regular [8] and black hole [9, 10] solutions to
the Einstein–Yang–Mills (EYM) system in d = 4 spacetime dimensions. To construct static
solutions to gravitating Yang–Mills (YM) systems in spacetime dimensions d � 5 [11, 12],
terms of higher order in the YM curvature must be included. Such terms appear in various
low energy effective actions of string theory. For our practical purposes, a particularly useful
family of such YM systems is

LP =
P∑

p=1

τp

2(2p)!
Tr F(2p)2 (1)

which is the sum of the terms in the YM hierarchy [13], with F(2p) being the p fold totally
antisymmetrized products of the YM curvature, F(2) = Fµν , in this notation. Clearly, the
highest value P of p in (1) is finite and depends on the dimensionality d of the spacetime. In
[11, 12] we chose the simplest possibility P = 2, since we restricted our study to 8 � d � 5.
The study of the classical solutions to system (1), which turn out to be the gravity-decoupling
solutions of EYM systems in these dimensions, is the aim of this paper. This is an important
aspect of the study of higher dimensional EYM solutions.

To complete the definition of the models (1) the gauge group G must be specified. With
the aim of constructing static spherically symmetric solutions in d spacetime dimensions, the
smallest such gauge group is G = SO(d − 1).5 Static finite energy solutions to system (1)

4 Higher order gauge field curvatures arise also as quantum corrections, see e.g. [4], but this is not the source of
higher order terms we have in mind here.
5 Should it turn out that the gauge group must be SO(n), n < D, it would only be possible to construct solutions
subject to less than spherical symmetry.
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may or may not be topologically stable depending on the dimensionality d of the spacetime
and the choice of gauge group G.

The purpose of the present work is to resolve the question of stability or instability of these
spherically symmetric solutions quantitatively. These are the gravity-decoupling limits of the
static and regular solutions to EYM systems in spacetime dimensions d � 6 [11]. In the d = 5
case [12], as in the usual d = 4 case [8], there are no gravity-decoupling solutions, unlike in
the case of the EYM–Higgs (EYMH) systems in d = 4 whose regular solutions [14, 15] tend
to the ’t Hooft–Polyakov monopole in the flat space limit. In both cases, higher dimensional
EYM and EYMH in d = 4, the models feature an additional dimensional constant. As a result
gravitating solutions exist only for a finite range of values of the gravitational constant. Here,
we restrict to the non-gravitating models only.

For simplicity, we restrict to the model considered in [11], (1) with p = 1 and 2 only, in
spacetime dimensions d = 6, 7 and 8. Solutions to this model on d = 6 Euclidean space were
constructed in [16] in a different context. Consistently with our requirement for the imposition
of spherical symmetry we choose G = SO(d − 1) and G = SO(d), and because of the higher
order of nonlinearity in the p > 1 models the choice of the concrete representations of G is
important.

Except for the case where there exists a nonvanishing Chern–Pontryagin (CP) charge in
the spacelike dimensions, these solutions are unstable. In the particular cases where G and its
representation is chosen such that the Chern–Simons (CS) charge is nonzero, this instability
will be that of a sphaleron [17, 18]. The quantitative study [19] of the latter will be the major
task below.

In section 2, we present the detailed models and the corresponding CS densities. In
section 3, spherical symmetry in the d − 1 spacelike dimensions is imposed and the residual
one-dimensional models are displayed in subsection 3.1 where the gauge invariance of the
ansatz is also stated. The static equations are given in subsection 3.2 and the corresponding
CS densities in subsection 3.3. In subsection 3.4, the CS charges are calculated. Section 4
contains our numerical results. In subsection 4.1 we have constructed the non-contractible loop
(NCL) for the unstable solutions and have plotted the energy of the solution versus the angle
parametrizing this loop. In those cases where there is a nonvanishing CS charge, the energy is
plotted also against the CS number. In subsection 4.2 we have constructed the negative modes
excited by the instability and have calculated the negative eigenvalues. Section 5 is devoted
to a summary and discussion of our results.

2. The models and Chern–Simons densities

In subsection 2.1 we define the static energy density functional resulting from the Lagrangian
(1) in spacetime dimensions d = 6, 7, 8, and consider the topological lower bound on the
energy for the d = 7 case. In subsection 2.2 we define the Chern–Simons densities for the
models in spacetimes d = 6 and 8.

Spacetime coordinates are labelled by Greek indices µ, ν, . . . , and spacelike coordinates
by Latin indices i, j, k, . . . .

2.1. The models

Since we are interested in static solutions, we will define the models on the (d − 1)-dimensional
Euclidean spacelike manifold. In the present work, we will restrict our considerations to the
P = 2 model (1) used in [11]. Expressed in component form this is

H2 = − τ1

2.2!
Tr F 2

ij +
τ2

2.4!
Tr F 2

ijkl (2)
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where

Fijkl = {Fi[j , Fkl]}
is the 4-form curvature, and [jkl] implies cyclic symmetrization. In the light of Derrick’s
scaling requirement, (2) is the simplest model that can support static finite energy solutions for
spacetime dimensions up to d = 8. Beyond that terms with higher values p must be included
in (1), but this is entirely unnecessary since all our conclusions from the present investigation
hold qualitatively also for d � 9.

The model is specified finally by the choice of the gauge group G, as well as its
representation. We will mostly restrict ourselves to G = SO(d), but for odd d we will
include the special case of G = SO(d − 1) as well.

When d is even, i.e. d = 6 and 8 in our examples, there exists a Chern–Simons (CS)
density in the 5 and 7 spacelike dimensions and the static solutions will display a sphaleron-
like instability. As will be seen below, the nonvanishing of the CS density is what necessitates
the choice of G = SO(d), with d = 6 and 8. These two examples will be the main focus of
our attention.

When d is odd, i.e. d = 7 in our examples, there exists a Chern–Pontryagin density in
the 6 spacelike dimensions. Provided that G and its representation is chosen suitably, this CP
density is nonvanishing and the resulting static solution will be stable. As will be seen below,
the existence of a stable soltion is what necessitates the choice of G = SO(6)(= SO(d − 1))

here. Otherwise, with G = SO(7)(= SO(d)), the static solution will not be stable.
Before proceeding to state the CP and the CS densities for the even d systems, we give

the topological lower bound on the energy density functional of the odd d, namely the d = 7
system. The inequality

Tr

(√
τ1Fij −

√
τ2

4!
εijklmnFklmn

)2

� 0 (3)

leads to

H2 � 1
8

√
τ1τ2εijklmn Tr FijFklFmn, (4)

stating the topological lower bound in terms of the third CP density. It follows that
the spherically symmetric solution [16] to the model in d = 7 is topologically stable
provided that the CP density on the right-hand side does not vanish. This is the case for
G = SO(d − 1) = SO(6), but only if the gauge fields are in the chiral representation of
G. These static solutions in even spacelike dimensions, which obey instanton-like boundary
conditions, play the role of solitons. The topological inequality (3) cannot be saturated since
the corresponding Bogomol’nyi equations are overdetermined.

2.2. The Chern–Pontryagin and Chern–Simons densities

The definition of Chern–Simons densities in d − 1 spacelike dimensions follows from that of
the Chern–Pontryagin (CP) densities, in even spacetime dimensions,

�d = 1

Nd

εµ1µ2µ3···µd
Tr Fµ1µ2Fµ2µ3 · · ·Fµd−1µd

, d = 6 and d = 8, (5)

where Nd is the appropriate normalization factor for dimension d. Of course, for the purpose
of definition (5), the signature is taken to be Euclidean.

The CP density is a total divergence, which we denote generally as

�d = ∂µ�(d)
µ . (6)
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In the two cases of interest at hand, with d = 6 and d = 8,�(d)
µ is given by

�(6)
µ1

= 5

26 × π3
εµ1µ2µ3···µ6 Tr Aµ2

[
Fµ3µ4Fµ5µ6 − Fµ3µ4Aµ5Aµ6 +

2

5
Aµ3Aµ4Aµ5Aµ6

]
(7)

�(8)
µ1

= 7

3 × 212 × π4
εµ1µ2µ3···µ8 Tr Aµ2

[
Fµ3µ4Fµ5µ6Fµ7µ8 − 4

5
Fµ3µ4Fµ5µ6Aµ7Aµ8

− 2

5
Fµ3µ4Aµ5Fµ6µ7Aµ8 +

4

5
Fµ3µ4Aµ5Aµ6Aµ7Aµ8 − 8

35
Aµ3Aµ4Aµ5Aµ6Aµ7Aµ8

]
.

(8)

From (7) and (8), the respective CS densities νd−1 are defined to be the µ = 0 components of
�(d)

µ in 5 and 7 Euclidean spacelike dimensions

ν5 = − 5

26 × π3
εi1i2i3···i5 Tr Ai1

[
Fi2i3Fi4i5 − Fi2i3Ai4Ai5 +

2

5
Ai2Ai3Ai4Ai5

]
(9)

ν7 = − 7

3 × 212 × π4
εi1i2i3···i7 Tr Ai1

[
Fi2i3Fi4i5Fi6i7 − 4

5
Fi2i3Fi4i5Ai6Ai7 − 2

5
Fi2i3Ai4Fi5i6Ai7

+
4

5
Fi2i3Ai4Ai5Ai6Ai7 − 8

35
Ai2Ai3Ai4Ai5Ai6Ai7

]
. (10)

3. Imposition of spherical symmetry

Our choice of gauge group will be G = SO(d), except in d = 7 where we will consider and
dispose of the special case G = SO(6) = SO(d − 1). Our choice of G = SO(d) for even
d is similar to the choice for the Weinberg–Salam [17] (WS) and for the Bartnik–McKinnon
[21, 22] sphalerons in d = 4. Furthermore, like in the latter case, we will employ the chiral
representation G = SO±(d), noting that for the special case d = 4,G = SO±(4) = SUL/R(2).

Since our main aim is to study the instability of the solutions to (2), we will employ the
general spherically symmetric ansatz parametrized by three radial functions w1(r), w2(r) and
w3(r). This follows from the axially symmetric ansatz [15] in d dimensions where all the
components of the gauge connection are taken to be independent of x0 and the component
A0 = 0. Like the sphalerons [17, 22] in d = 4, our solutions are also parametrized by the
function w1 while the functions (w2, w3) will be excited only in the directions of the instability.

For even d with G = SO(d), including d = 4, the imposition of spherical symmetry on the
gauge field on (d − 1)-dimensional Euclidean space results in

Ai = 1 − w1(r)

r
�

(d)
ij x̂j +

w2(r)

r
(δij − x̂i x̂j )�

(d)
j,d +

w3(r)

r
x̂i x̂j�

(d)
j,d (11)

where �
(d)
ij is (one of ) the chiral representation(s) of the algebra of SO(d), namely

�
(d)
ij =

(
11 ± 
d+1

2

)

ij (12)



(d)
ij = −1

4
[
i, 
j ], (13)


ij being the spinor representation matrices of the algebra of SO(d) defined in terms of 
i ,
the gamma matrices in d dimensions.

For odd d with G = SO(d), there are no chiral representations, so ansatz (11) holds only in a
formal way, replacing the matrices �

(d)
ij by 


(d)
ij .
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For odd d with G = SO(d), it is possible to employ the chiral representation of SO(d − 1).
Here again, (11) holds formally, but now by replacing d with d − 1 in it. As noted above, in
this case the solution (with w2 = w3 = 0 everywhere) will describe a stable soliton.

For the evaluation of the residual one-dimensional energy density functional, only the
algebraic properties of �

(d)
ij and of 


(d)
ij enter the calculations, so the same result holds (up

to an unimportant numerical factor 2) both for even and for odd d and with all G. For the
evaluation of the CP and CS densities however, this distinction must be kept.

3.1. Reduced one-dimensional systems and gauge freedom

Imposition of spherical symmetry on the (d − 1)-dimensional SO(d) system results in the
one-dimensional energy density functional

Hd = 2
d−2

2 τ1

2 × 2!

d − 2

4
rd−4

[(
w′

1 +
w2w3

r

)2
+

(
w′

2 − w1w3

r

)2
+

d − 3

2r2
(1 − | �w|2)2

]

+
2

d−2
2 τ2

2 × 4!
32(d − 2)(d − 3)(d − 4)rd−8(1 − | �w|2)2

×
[(

w′
1 +

w2w3

r

)2
+

(
w′

2 − w1w3

r

)2
+

d − 5

4r2
(1 − | �w|2)2

]
, (14)

in which we have used the shorthand notation

| �w|2 = w2
1 + w2

2.

For odd d = 7 and with G = SO(6), (14) holds as well, but the solutions to the field
equations (to be presented in the following subsection) are quite different, with w1 = w2 = 0
everywhere.

In the generic case, for fields (11), the requirement of analyticity at the origin r = 0
results in the asymptotic conditions

w1(0) = 1, w2(0) = 0, w3(0) = 0, (15)

while in the asymptotic region r � 1 the requirement of finiteness of the energy results in the
boundary condition,

lim
r→∞ | �w|2 = lim

r→∞
(
w2

1 + w2
2

)2 = 1. (16)

Equation (16) can be parametrized, like in [19], in terms of the familiar angle q as

lim
r→∞ w1 = cos q, lim

r→∞ w2 = sin q. (17)

Conditions (16) and (17) can be understood better by displaying the gauge freedom of the
energy density functional (14), under the action of the local U(1) transformation

g[ω(r)] ∈ U(1), lim
r→0

ω(r) = 0, lim
r→∞ ω(r) = −q. (18)

The action of this U(1) gauge transformation is given by(
w1

w2

)
g[ω]�→

(
cos ω −sin ω

sin ω cos ω

)(
w1

w2

)
(19)

w3
g[ω]�→ w3 + rω′. (20)
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3.2. The Euler–Lagrange equations

The Euler–Lagrange equations of the SO(d) systems are, for variations of w1, w2 and w3 in
that order,

τ1

{
w′′

1 +
1

r
[(d − 4)w′

1 + 2w′
2w3 + w2w

′
3]

+
1

r2

([
(d − 3)(1 − | �w|2) − w2

3

]
w1 + (d − 5)w2w3

)}

+
3τ2

4r4
(d − 3)(d − 4)(1 − | �w|2)

×
{
(1 − | �w|2)

(
w′′

1 +
1

r
[(d − 8)w′

1 + 2w′
2w3 + w2w

′
3]

+
1

r2

([
(d − 5)(1 − | �w|2) − w2

3

]
w1 + (d − 9)w2w3

))

+ 2

[(
w′

1 +
w2w3

r

)2
+

(
w′

2 − w1w3

r

)2
]

w1 − 2(| �w|2)′
(
w′

1 +
w2w3

r

)}
= 0

(21)

τ1

{
w′′

2 +
1

r
[(d − 4)w′

2 − 2w′
1w3 − w1w

′
3]

+
1

r2

([
(d − 3)(1 − | �w|2) − w2

3

]
w2 − (d − 5)w1w3

)}

+
3τ2

4r4
(d − 3)(d − 4)(1 − | �w|2)

×
{
(1 − | �w|2)

(
w′′

2 +
1

r
[(d − 8)w′

2 − 2w′
1w3 − w1w

′
3]

+
1

r2

([
(d − 5)(1 − | �w|2) − w2

3

]
w2 − (d − 9)w1w3

))

+ 2

[(
w′

1 +
w2w3

r

)2
+

(
w′

2 − w1w3

r

)2
]

w2 − 2(| �w|2)′
(
w′

2 − w1w3

r

)}
= 0

(22)[
τ1 +

3τ2

4r4
(d − 3)(d − 4)(1 − | �w|2)2

] [
(w1w

′
2 − w2w

′
1) − 1

r
w3| �w|2

]
= 0. (23)

The last equation, (23), is satisfied by the solutions of (21) and (22), as can be seen
straightforwardly by differentiating (23) and identifying it with the difference of w2 times
(21) and w1 times (22). Thus, exploiting the gauge freedom (19) and (20), we choose the
radial gauge with w3 = 0. We then proceed to solve equations (21) and (22) for the two
functions w1 and w2.

We note here that in the w3 = 0 gauge, equations (21) and (22) are symmetric in the
functions w1 and w2 as in the case of the Bartnik–McKinnon sphaleron [21, 22], and in
contrast to the WS case [19] in which this symmetry is absent due to the presence of the
complex doublet Higgs field.

3.2.1. SO±(d − 1) solitons in d dimensions. Before proceeding to consider the sphaleron
solutions, we dispose of the stable soliton solutions of the models in odd d spacetime
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dimensions when the gauge connection takes its values in the chiral representation of
SO(d − 1). We restrict this demonstration to the model in d = 7, with G = SO±(6).

As a practical illustration of the topological lower bound (4), using the notation
κ1 = √

(d − 2)τ1/2, κ2 = 3
√

(d − 2)(d − 3)(d − 4)τ2, consider the two inequalities[
κ1r

d−4
2 w′ − κ2r

d−8
2

√
d − 5

4r2
(1 − w2)2

]2

� 0 (24)

[
κ2r

d−8
2 (1 − w2)w′ − κ1r

d−4
2

√
d − 3

2r2
(1 − w2)

]2

� 0. (25)

Adding (24) and (25) we have

Hd [w1, w2, w3] = Hd [w, 0, 0] � 2κ1κ2

(√
d − 5

4
+

√
d − 3

2

)
rd−7(1 − w2)w′, (26)

where Hd [w, 0, 0] is given by the energy density functional (14) with w1 = w and w2 =
w3 = 0. It is now obvious that the right-hand side of inequality (26) is a total derivative only
for the spacetime dimension d = 7 at hand, and that it is the residual CP density after the
imposition of spherical symmetry on the G = SO±(d − 1) = SO±(6) model, with G is in the
chiral representation.

3.3. Reduced Chern–Simons densities and non-contractible loop

The reduced one-dimensional Chern–Simons (CS) densities of static gauge fields (11) in (even)
d spacetime dimensions, with gauge groups G = SO(d) in the chiral representation SO±(d),
take on nonvanishing values6. The particular examples considered concretely here are those
in d = 6 and d = 8, given by (9) and (10). Subjecting these to spherical symmetry according
to ansatz (11), we find

n5 = − 5

2π

{
[2(1 − w1) + 3(1 − | �w|2)][(w1 − 1)w′

2 − w2w
′
1] +

3

r
w3(1 − | �w|2)2

}
(27)

n7 = − 7

5 × 23π

{[
5
(
(1 − w1)

2 + w2
2

)2
+ 6(1 − w1)(3(1 − w1) + 4(1 − | �w|2))]

× [(w1 − 1)w′
2 − w2w

′
1] +

5w3

r
(1 − | �w|2)3

}
. (28)

In what follows a most important role will be played by the non-contractible loop of
configurations displaying the instability of the sphalerons, in contrast to the case of the
WS model [19], where the minimum energy path in configuration space can be calculated
numerically. In this sense, our case is similar to the Bartnik–McKinnon sphaleron [21, 22].
This is a result of the (w1, w2) symmetry in the field equations (21) and (22). In the former
case where the doublet Higgs field removes this (w1, w2) symmetry, conditional solutions with
fixed CS number QCS can be constructed by solving the equations of motion that extremize
the energy density functional plus a Lagrange multiplier times the CS density. In that case
[19], the minimal finite energy path versus QCS can be constructed concretely. The situation
here is similar, rather, to the second case of the EYM sphaleron [21, 22], where the analysis
of instability is carried out exclusively by employing an NCL.

6 Note that if the representations of G adopted were not the chiral ones given by the spin matrices (12), but rather
those given by (13), then the resulting CS densities would vanish.
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The actual sphaleron solutions are parametrized by the functions

w1 = f (r), w2 = 0, w3 = 0 (29)

which will be constructed numerically in the following section, consistently with the
asymptotic conditions (15) and (16), the function f (r) in (29) satisfies the asymptotics

lim
r→0

f (r) = 1, lim
r→∞ f (r) = −1. (30)

Following [23] we adopt the NCL configurations

w̄1 = 1
2 (1 + cos q) + 1

2 (1 − cos q)f (31)

w̄2 = 1
2 (sin q)(1 − f ) (32)

w̄3 = 0, (33)

which by virtue of (30) ensures that both (15) and (17) are satisfied all along the NCL.

3.4. Calculation of the Chern–Simons number

In the case of the WS model [17–19, 21, 22], the CS number QCS has the physical interpretation
of Baryon number. Here, it merely is a convenient topological charge characterizing the
sphaleron.

The topological CP charges are given by the d-dimensional volume integrals of ∂µ�(d)
µ .

Here we are interested in the k = 3 and k = 4 examples for which �(d)
µ are given by (7) and

(8) respectively, but now we consider static fields in a d-dimensional Minkowskian spacetime.
The topological charge in this context is referred to [18] as the CS charge QCS.

Adapting the arguments of [18] to our cases, notably assuming that QCS = 0 at t = −∞,
the topological charges are given by

QCS = 1

N(d)

(∫ t0

−∞
dt

∫
S(d−1)

�
(d)
i dSi +

∫
t=t0

dd−1x �
(d)
0

)
. (34)

The Chern–Simons (CS) densities �
(d)
0 = νd−1 are displayed by (9) and (10). The task at

hand is to evaluate integrals (34) for our two sphaleron solutions.
In the w3 = 0 gauge in which the sphaleron solutions are constructed, the surface integral

term in (34) does not vanish since the gauge potential decays with power r−1 as r → ∞, as
seen from (11) and (29) and (30). It is convenient to evaluate (34) in a gauge in which the
surface integral vanishes, such that

QCS = 1

N(d)

∫
t=t0

dd−1x �
(d)
0 = 1

N(d)

∫
t=t0

νd−1 dd−1x, (35)

which for the spherically symmetric fields (11) reduces to the one-dimensional integral

QCS =
∫ r=∞

r=0
nd−1 dr (36)

with nd−1(r) given by (27) and (28).
But substituting the NCL configuration (31)–(33) in the expressions for CS densities

(27) and (28), results in the vanishing of n5 and of n7. This means that the nonvanishing
contribution to integral (34) must come from the surface integral term, which is not convenient
to evaluate since the solutions and the NCL configurations at our disposal are time independent.
But by definition (34) is gauge invariant, so it should be evaluated in a gauge in which the
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surface integral in (34) does not contribute. To this end, following [18], we subject (31)–(33)
to the gauge transformation (19) and (20), such that

lim
r→0

ω(r) = 0, lim
r→∞ ω(r) = −q. (37)

With these boundary conditions on the U(1) gauge group parameter, and (30) for the sphaleron
profile function f (r), we find

lim
r→∞

ωw̄1 = 1, lim
r→∞

ωw̄2 = 0, lim
r→∞

ωw̄3 = 0, (38)

which results in connection (11) decaying faster than r−1 at infinity. As desired the surface
integral term in (34) now vanishes. The density nd−1 in (36) does not vanish, and can be
evaluated to give the CS number.

Subjecting the NCL configuration (w̄1, w̄2, w̄3) given by (31)–(33) to the gauge
transformation (19) and (20) with (37), and substituting the resulting set of functions
(ωw̄1,

ωw̄2,
ωw̄3) into the densities (27) and (28), we obtain total derivatives in the variable r.

After integration, we have the respective CS numbers7

QCS = 15

2π

(
3q − 4 sin q +

1

2
sin 2q

)
(39)

QCS = 21

20π
(30q − 45 sin q + 9 sin 2q − sin 3q). (40)

4. Numerical results

4.1. The sphaleron on the NCL

We have solved systems (21) and (22) numerically for d = 6, 7, 8, i.e. for the gauge group
G = SO(d). (This excludes the case of odd d with G = SO(d − 1) with topological lower
bound (26).) The coupling constants τ1, τ2 can be chosen arbitrarily by choosing an appropriate
scale of the mass M, defined as the integral of Hd

M =
∫

Hd dr,

and of the radial variable r in (14). We have chosen τ1 = τ2 = 1. However, for practical
reasons, the numerical values for the masses and for the negative modes given below will be
given in units 2(d−2)/2Sd−2, where Sd−2 denotes the surface of the sphere in the d-dimensional
spacetime.

The three profiles for the function w1(r) are presented in figure 1, and the figure reveals
that the dependence of the profile on d is rather weak.

In the units chosen, the masses of these solutions are respectively M(d = 6) ≈
4.67,M(d = 7) ≈ 11.3,M(d = 8) ≈ 36.8. From the numerical profile for w1, the
different configurations of the path (31)–(33) can be constructed; their energies can further
be computed as functions of the parameter q. The energy is plotted as a function of the
parameter q on figure 2 for d = 6, 7, 8. As expected, the figure shows that the configurations
on the path have finite energy and that the energy increases monotonically from the vacuum
(q = 0) to the classical solution (q = π), demonstrating that the classical solution is indeed a
sphaleron.

For the cases with even d and nonvanishing CS densities (27) and (28), the energy is
plotted also against the CS charges (39) and (40) respectively, on figure 3.

7 In d = 4, n3 = 1
2π

[(w1 − 1)w′
2 − w2w

′
1 + w3

r
(1 − | �w|2)], yielding the familiar [19] result QCS = q−sin q

2π
.
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Figure 1. The profiles of the function w1 for the sphaleron solutions in d = 6, 7, 8, which are
practically unchanged when the function w2 is perturbed by δw2. The profiles of the negative
modes δw2 are displayed and the corresponding negative eigenvalues ω2 listed.

Figure 2. The energy along the path extrapolating between the vacuum and the sphaleron is plotted
as a function of θ ≡ q/π for d = 6, 7, 8.
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Figure 3. The energy along the path extrapolating between the vacuum and the sphaleron is plotted
as a function of q for d = 6, 8.

4.2. Negative modes

In the second subsection we have carried out an infinitesimal stability analysis by constructing
the negative modes and evaluating their negative eigenvalues. We also track, within the limits
of validity of this infinitesimal analysis, the growth of the CS charge as a function of the w1

and the function w2 excited along the direction of instability. For this purpose we consider a
perturbation of the classical solution constructed in the previous subsection:

w̃1 = w1 + eiωtδw1, w̃2 = w2 + eiωtδw2, w̃3 = 0, (41)

choosing again to work in the gauge w3 = 0. Inserting the perturbed solution into the
equations of motion and retaining only the linear terms in the fluctuation, we got a system of
two decoupled Sturm–Liouville equations in δw1 and δw2. The construction of the normal
modes is equivalent to finding the normalizable solutions of these equations, which is a
problem beyond the scope of this paper. We limit our analysis to the construction of the mode
of lowest eigenvalue. The results of [24] strongly suggest that the main mode of instability of
our solution should appear in the sector δw1 = 0. This turns out to be the case. Technically
the negative mode can be constructed by minimizing the quadratic form

δE = 2(d−2)/2Sd−2
(d − 2)

16

∫
dr rd−4(I1(δw

′
2)

2 − I2(δw2)
2) (42)

with

I1 =
(

τ1 + 3τ2(d − 3)(d − 4)
1

r4

(
1 − w2

1

)2
)

(43)

I2 = (d − 3)

(
1 − w2

1

)
r2

(
τ1 + 3τ2(d − 4)

1

r4

(
(d − 5)

(
1 − w2

1

)2
+ 2r2(w′

1)
2
))

. (44)
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In (43) and (44), the function w1 represents the classical sphaleron solution. Inspecting the
form of this variational problem we see that it leads to a Sturm–Liouville equation with a
potential given by the function −I2. This corresponds to a potential well and allowing the
existence of a negative mode. We were able to construct numerically one normalized negative
mode δw2 in each case d = 6, 7, 8, whose profiles are displayed in figure 1, together with
the profiles of the corresponding classical solution w1. The fact that δw2 presents no node
strongly suggests that our solution corresponds to the eigenmode of lowest eigenvalue. These
eigenvalues, indeed, appear to be negative and were evaluated to be −ω2 = 3.88, 17.4, 84.6
respectively for d = 6, 7, 8, again using the same scale as before.

Finally we evaluate the CS charge QCS for d = 6 case, for the configurations of the form
w̃1 = w1, w̃2 = εδw2, ε being an infinitesimal parameter. We find

QCS(w̃1, w̃2) = QCS(q = π) − 1.54ε (45)

where QCS(q = π) is the CS charge of the sphaleron, which for d = 6 is evaluated from (39),
as QCS(q = π) = 22.5. This shows that the CS charge varies linearly with the parameter ε

when the sphaleron is perturbed in the direction of its unstable mode.

5. Summary and conclusions

We have studied static finite energy solutions to Yang–Mills systems in higher dimensions.
The interest in these solutions is that they are gravity-decoupling limits of the fully gravitating
Einstein–Yang–Mills solutions in higher dimensions. In turn, gravitating YM systems in
higher dimensions are important field theoretic models arising in the study of Dp-branes
in spacetime dimensions larger than 4, in the context of the low energy effective action of
superstring theory and gauged supergravities. Some of these solutions have sphaleron-type
instabilities, which must be studied. In this respect the higher dimensional gravitating YM
systems are similar to the gravitating YM model in 4 spacetime dimensions, whose sphaleron-
like instabilities were studied in detail in [21, 22]. What is different in the higher dimensional
cases at hand, versus the 4 spacetime dimensional case [21, 22], is that unlike for the latter,
here we have gravity-decoupling limits, and the sphaleron nature of the gravitating solutions is
essentially identical to their flat space counterparts. The sphaleron analysis being appreciably
simpler in the flat case, we have chosen to work with those models.

We have restricted our studies to those of spherically symmetric solutions only. This
has necessitated certain, rather limited, choices of the gauge groups G. These gauge groups
turn out to be SO(d − 1) and SO(d) in odd spacetime dimensions d, and SO(d) only in even
d. The gauge connections take their values in the spinor representations in terms of Dirac
matrices, and whenever G = SO(N) is defined for even N, we have employed the chiral
representations of SO(N). All solutions considered are evaluated numerically and they satisfy
the second-order Euler–Lagrange equations rather than first-order self-duality equations, since
the YM systems in question are not scale invariant.

We have shown that in odd spacetime dimensions d, the solutions to SO(d − 1) YM
systems are topologically stable if the representation of G employed is chiral, i.e. that they
are solitons which are stabilized by the Chern–Pontryagin (CP) topological charge. These are
the only models which support stable solitons. Should the representations of the SO(d − 1)

algebra employed not be taken to be the chiral ones, the solutions will be unstable. They are
unstable also for the choice of G = SO(d).

In even spacetime dimensions, the solutions turn out to be always unstable, due essentially
to the absence of a CP topological charge in the odd spacelike dimensions. For G = SO(d), by
employing the chiral representations, we have calculated the Chern–Simons (CS) charges, and
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have plotted the energy of the non-contractible loops versus the CS charge QCS, highlighting
the nature of these solutions as types of sphalerons.

For all the unstable solutions, namely to the SO(d) models in all d-dimensional spacetimes,
we have constructed the negative modes of the corresponding fluctuation equations and
calculated their negative eigenvalues. For the SO±(6) solutions in d = 6 in particular,
we have also calculated QCS perturbatively, showing that in the region of validity the QCS

increases linearly in the perturbation parameter.
We have restricted our study to the simplest model (1), with p = 1 and p = 2

terms only, in spacetime dimensions d = 6, 7, 8. This limited choice is sufficient to
illustrate the questions of stability and instability in the generic cases. The properties
demonstrated in the p = 2 examples (P being the highest value of p in the sum in (1))
studied repeat themselves in every 4p dimensions. Thus for example for p = 3 models, in
spacetime dimensions d = 6, 8, 10, 12 the solutions will be unstable sphalerons, while those
in d = 7, 9, 11 will be stable, being stabilized by the third, fourth and fifth Pontryagin
charges, respectively. If the d = 7 model chosen in that case does not contain the
p = 2 (in addition to the obligatory p = 3 term dictated by Derrick) term in the YM
hierarchy, then there will be no gravity-decoupling limit. In that case the sphaleron analysis
must be carried out in the fully gravitating model, following the lines of the analysis in
[21, 22] for d = 4. The same holds true in the case of p = 2 model studied here, d = 5. In
that case too there exists no flat space limit so that the sphaleron analysis must again be carried
out as in p = 1, d = 4 [22, 21]. The latter analysis falls outside the scope of the present work
and is deferred to a future study.
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